ExamPassdump의Snowflake인증 DAA-C01시험덤프공부가이드 마련은 현명한 선택입니다. Snowflake인증 DAA-C01덤프구매로 시험패스가 쉬워지고 자격증 취득율이 제고되어 공을 많이 들이지 않고서도 성공을 달콤한 열매를 맛볼수 있습니다.
ExamPassdump 에서 제공해드리는 Snowflake인증DAA-C01시험덤프자료를 구입하시면 퍼펙트한 구매후 서비스를 약속드립니다. ExamPassdump에서 제공해드리는 덤프는 IT업계 유명인사들이 자신들의 노하우와 경험을 토대로 하여 실제 출제되는 시험문제를 연구하여 제작한 최고품질의 덤프자료입니다. Snowflake인증DAA-C01시험은ExamPassdump 표Snowflake인증DAA-C01덤프자료로 시험준비를 하시면 시험패스는 아주 간단하게 할수 있습니다. 구매하기전 PDF버전 무료샘플을 다운받아 공부하세요.
인재도 많고 경쟁도 많은 이 사회에, 업계인재들은 인기가 아주 많습니다.하지만 팽팽한 경쟁률도 무시할 수 없습니다.많은 Snowflake인재들도 어려운 인증시험을 패스하여 자기만의 자리를 지키고 있습니다.우리ExamPassdump에서는 마침 전문적으로 이러한 Snowflake인사들에게 편리하게 시험을 DAA-C01패스할수 있도록 유용한 자료들을 제공하고 있습니다.
질문 # 44
You are building a Snowsight dashboard that visualizes website traffic data'. The data includes a column 'visit_timestamp' (TIMESTAMP NTZ) and you need to display the number of unique visitors per hour for the last 24 hours. You also want to allow users to filter the data by country. You plan to use a chart to visualize the trend. Which of the following approaches are the MOST efficient and accurate for achieving this?
정답:A,E
설명:
Option A is a good approach because 'DATE _ TRUNC is efficient for truncating timestamps, and applying the filter directly in the SQL query can optimize data retrieval. Option D is also very efficient, as it pre-aggregates the data, which improves dashboard performance. Option B is less efficient because the 'HOUR' function only returns the hour value without the date, making it harder to filter for last 24 hours. Also, dashboard-level filters can sometimes be less performant than SQL-level filters for large datasets. Option C introduces a calculated field, which is generally less efficient than performing the transformation directly in SQL. Option E is technically correct, it only applies to TEXT stored visit timestamp. Thus, pre-aggregation and 'DATE_TRUNC' are superior.
질문 # 45
A Snowflake data pipeline utilizes Snowpipe to ingest data from cloud storage into a staging table. After the data is ingested, a series of transformation tasks process the data and load it into a target table. Due to network connectivity issues, Snowpipe occasionally experiences delays in loading data, causing downstream tasks to fail. Which strategies can be implemented to monitor the latency and improve the resilience of this pipeline?
정답:B,C,D
설명:
Option A is correct because checking the last updated timestamp allows the task to skip its execution or alert if data isn't timely. Option C is correct as it offers a resilient approach. Option E is also a correct since error logging is a critical part of resilience. Option B addresses throughput, not necessarily latency or resilience related to external issues, increasing concurrency does not guarantee latency improvements if connectivity is the issue. Option D only monitors credit consumption, not pipeline latency.
질문 # 46
You are tasked with enriching a customer dataset in Snowflake. The 'CUSTOMER DATA table contains customer IDs and country codes. You have a separate 'COUNTRY INFORMATION' table that contains country codes and corresponding currency codes. Both tables reside in the 'RAW DATA schema of the 'ANALYTICS DB' database. You need to create a view called ENRICHED CUSTOMER DATA' in the 'TRANSFORMED DATA' schema that joins these tables to add currency information to the customer data'. You want to optimize this view for performance. Which of the following approaches would be the MOST efficient and scalable, considering potential data volume increases?
정답:B
설명:
Materialized views generally provide better performance than standard views for complex queries, especially with joins. Clustering on the 'COUNTRY_CODE column further enhances performance by physically organizing the data based on this column, making lookups more efficient. Using secure view wouldn't impact on performance. Regular view refreshment using scheduled task is not as efficient compared to materialized view. UDFs can introduce performance overhead, especially for large datasets.
질문 # 47
You have a Snowflake environment where different data analysts run a variety of ad-hoc queries against the same set of tables. You've noticed inconsistent query performance, with some queries running quickly and others taking much longer despite having similar logic. To better manage costs and optimize performance, which of the following strategies would be MOST effective in leveraging virtual warehouse caching and resource management in Snowflake? (Select TWO)
정답:B,C
설명:
Creating separate virtual warehouses (B) allows you to isolate workloads, preventing resource contention and ensuring consistent performance for different groups of analysts or types of queries. Resource monitors (D) help control costs by limiting credit usage, preventing runaway queries from consuming excessive resources. Sharing a single, large warehouse (A) can lead to resource contention. Short 'AUTO_SUSPEND (C) can lead to frequent warehouse startups, negating caching benefits. Disabling result caching (E) defeats a key performance optimization mechanism.
질문 # 48
You are preparing to load data from an internal stage that contains multiple CSV files into a Snowflake table. You need to ensure that only files matching a specific pattern are loaded (e.g., files starting with 'sales_'). You also need to transform the date column (located in the third position of each CSV file) from 'YYYYMMDD' to 'YYYY-MM-DD' format during the load. The target table 'SALES has columns 'product_id', and 'region'. Which combination of options correctly filters the files and transforms the date format during the load process?
정답:E
설명:
Option D is correct. It uses the 'PATTERN' parameter to filter files starting with 'sales_' and ending with '.csv'. It then uses the TRANSFORM AS SELECT clause to select and transform the data. Inside the select clause, it correctly uses 'substr' to reformat the date and 'TO_DATE to convert the re-formatted string into a DATE datatype. The 'ON_ERROR = 'SKIP_FILE" is a good practice for handling potential errors. Option A has an invalid parameter declaration within the COPY INTO command and does not use PATTERN, making the filter inaccurate. Option B attempts to define date format at file format level, but date transformatinon is required and FILES filter declaration is invalid. Option C uses 'TRANSFORMATION' instead of 'TRANSFORM AS SELECT , which is incorrect and will cause an error. Option E attempts to define DATE FORMAT with the wrong TYPE and is missing concatination of DATE string.
질문 # 49
......
ExamPassdump 에서는 최선을 다해 여러분이Snowflake DAA-C01인증시험을 패스하도록 도울 것이며 여러분은 ExamPassdump에서Snowflake DAA-C01덤프의 일부분의 문제와 답을 무료로 다운받으실 수 잇습니다. ExamPassdump 선택함으로Snowflake DAA-C01인증시험통과는 물론ExamPassdump 제공하는 일년무료 업데이트서비스를 제공받을 수 있으며 ExamPassdump의 인증덤프로 시험에서 떨어졌다면 100% 덤프비용 전액환불을 약속 드립니다.
DAA-C01시험대비 최신버전 문제: https://www.exampassdump.com/DAA-C01_valid-braindumps.html
저희 사이트에서 제공해드리는 덤프와의 근사한 만남이 DAA-C01 최신 시험패스에 화이팅을 불러드립니다, Snowflake인증 DAA-C01인증시험을 패스하여 취득한 자격증은 IT인사로서의 능력을 증명해주며 IT업계에 종사하는 일원으로서의 자존심입니다, ExamPassdump의Snowflake DAA-C01 인증시험덤프는 자주 업데이트 되고, 오래 되고 더 이상 사용 하지 않는 문제들은 바로 삭제해버리며 새로운 최신 문제들을 추가 합니다, Snowflake DAA-C01인기자격증 업데이트가능하면 바로 업데이트하여 업데이트된 최신버전을 무료로 제공해드리는데 시간은 1년동안입니다, 방문하는 순간 Snowflake DAA-C01시험에 대한 두려움이 사라질것입니다.
어떤 신의 비호를 받는지는 몰라도, 그동안은 번번이 잘 빠져나갔다만 다음에는 결코 벗어나지 못할 것이다, 그리고 그가 안내한 방은 의외로 단아한 방이었다, 저희 사이트에서 제공해드리는 덤프와의 근사한 만남이 DAA-C01 최신 시험패스에 화이팅을 불러드립니다.
Snowflake인증 DAA-C01인증시험을 패스하여 취득한 자격증은 IT인사로서의 능력을 증명해주며 IT업계에 종사하는 일원으로서의 자존심입니다, ExamPassdump의Snowflake DAA-C01 인증시험덤프는 자주 업데이트 되고, 오래 되고 더 이상 사용 하지 않는 문제들은 바로 삭제해버리며 새로운 최신 문제들을 추가 합니다.
업데이트가능하면 바로 업데이트하여 업데이트된 최신버전을 무료로 제공해드리는데 시간은 1년동안입니다, 방문하는 순간 Snowflake DAA-C01시험에 대한 두려움이 사라질것입니다.